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We extend to the case of a finite set of stochastic variables whose distribution 
P obeys a nonlinear Fokker-Planck equation our previous treatment of 
diffusion in a bistable potential U, in the limit of small, constant diffusion 
coefficient. This is done with the help of an extended WKB approximation 
due to Gervais and Sakita. The treatment is valid if there exists a well-defined 
most probable path connecting the minima of U, and if the valley of Ualong 
that path has a slowly varying width, and weak curvature and twisting. We 
find that: (i) the final approach to equilibrium is governed by Eyring's 
generalization of the Kramers high-viscosity rate, which we rederive; (ii) for 
intermediate times, if the initial distribution is concentrated in the region of 
instability (close vicinity of the saddle point of U), P has, along the most 
probable path, the behavior described by Suzuki's scaling statement for a 
one-dimensional system. In a second part of this time domain, P enters the 
diffusive regions around the minima of U and relaxes toward local longi- 
tudinal equilibrium on a time comparable with Suzuki's time scale. The time 
for relaxation toward transverse local equilibrium may, depending on the 
initial conditions, compete with these longitudinal times. 
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1. I N T R O D U C T I O N  

In  a p r ev ious  p a p e r  ~1~ (hereaf te r  re fe r red  to  as I), we h a v e  s tud ied  the t ime-  

d e p e n d e n t  so lu t ion  o f  the  o n e - d i m e n s i o n a l  F o k k e r - P l a n c k  e q u a t i o n  

OP 0 [U'(x)P] + 0 02p 
~-7 = o~ ~x  - - ~  (]) 
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in the small-0 limit and for a bistable "potent ia l"  U(x). We have shown that, 
in this limit, Eq. (1) can be solved with the help of a WKB approximation. 
This gives P(x, t) in the long-time (Kramers (2~) regime, which corresponds to 
the escape of particles from one of the potential wells to the other after local 
equilibrium has been established, and in the intermediate (Suzuki(3~) regime, 
which corresponds, in particular, to the splitting between the two wells of a 
distribution starting from the vicinity of the local maximum of U. 

The one-dimensional model (1) applies as such--at  least to our knowledge 
- -only  to the case of the laser. The Fokker-Planck equation (1) can be con- 
sidered as describing diffusion or chemical reactions in the high-friction 
limit (0 is then proportional to the temperature), or as resulting from the 
truncated Kramers-Moyal development of the master equation for an extensive 
variable (0 is then proportional to the inverse volume of the system). 

However, it is clear that, in the latter case, a realistic model would imply 
that Eq. (1) be extended to describe a stochastic variable with a quasiinfinite 
number of components (describing, e.g., a space-dependent magnetization). 

The former (diffusive) case corresponds, in practice, to a finite, but larger 
than one, number of stochastic variables: these are the three space co- 
ordinates in the case of atomic diffusion. In the chemical reaction case, the 
choice of the variables is fixed by the shape of the free energy hypersurface. 

In this paper we will only consider this diffusive case; that is, we will 
study the time-dependent solution of the N-dimensional equation 

~t P(r, t) = V.[P(r, t )VU(r)I  + V2P(r, (2) t) 0 2 

with r = {xl, x2 ..... XN}, where N is a finite number. 
We will solve this equation in the small-0 limit, with the help of an extended 

WKB approximation recently developed by field theorists (~,5~ to solve the 
multidimensional instanton problem. 

This will enable us to rederive the semiphenomenological Eyring general- 
ized expression (6~ of the Kramers reaction rate. This method has the advantage 
that it clarifies the conditions of validity of the Eyring absolute rate formula. 
The corresponding long-time limit of P(r, t) is explicitly obtained. Moreover, 
the WKB method, as in the one-dimensional case, provides a systematic way 
to evaluate P(r, t) in the intermediate-time range and to analyze the character- 
istic times that govern its evolution. 

2. P R I N C I P L E  OF T H E  W K B  T R E A T M E N T  

With the help of the well-known transformation 

P(r, t) = e x p [ -  U(r)/20] G(r, t) (3) 

one obtains for the distribution P(r, t]r0) which satisfies the initial condition 

P(r, t = 0) = 3(r - ro) (4) 
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the expression 

P(rtiro) = exp(U(r0)2 ~ U(r))k>~o?k(ro)~ok(r) exp(_ t~k  ) (5) 

where the ~vz are the solutions (regular for lr]-+ oo and normalized) of the 
Schr6dinger-like eigenmode equation (where the role of h is played by 0~/j) : 

- 0  2 V 2 ~  + ~(r )q~  = A~q~k (6) 

and 
Y'(r) = �88 2 - �89 V2U(r) (7) 

In order to make the following algebra clearer, we will now explain the multi- 
dimensional WKB technique in the case of a two-dimensional system (x~, x2 
x, y). The N-dimensional generalization is given in Appendix A. 

We follow here the method of Gervais and Sakita, <5) whose results we will 
now recall, referring the reader to their article for more details. 

We assume the physical potential U(r) to be of the type shown in Fig. 1, 
i.e., U(x, y) has two minima separated by a saddle point. For small 0 (0 << AU; 
see Fig. 1), the corresponding Y'(x, y) (Fig. 2) exhibits three minima, located 
close to the three extrema of U. 

Let us consider the eigenmode equation: 

?Vx ~ + + < (x ,  y) ~(x, y) = a~o(x, y) (s) 

Fig. 1. A two-dimensional bistable potential 
U(x, y). 

I: (x,y) 

Fig. 2. The V(x, y) potential associated with U(x, y). 

V(x d) 

F 

I 
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The long- and intermediate-time behavior of P(r, t) are controlled, as seen 
from Eq. (5), by the lowest eigenstates of Eq. (8), which are, obviously, essen- 
tially concentrated in the bottoms of the three wells of f .  The effects associ- 
ated with the bistable character of U correspond to the tunneling coupling 
between the three wells of ~r We are thus led, as in the instanton problem, (~,5) 
to define a most probable escape path (MPEP) joining the different wells of 
~/~(x, y), defined as the path that minimizes the generalized classical action 
fds (~r - h) 1/2 between the wells. 

The spirit of the extended WKB approximation consists in noticing that, 
for small 0, and far from the turning points, the wave functions are essentially 
confined within narrow tubes (of radius ~ 01/2) along the MPEP. 

We assume for simplicity that, in our case, the MPEP is unique. Moreover, 
we also assume it to be a straight line that we choose to be the x axis (this 
implies, obviously, that the three extrema of U lie in the y = 0 plane). The 
method can be extended to the case of more than one MPEP, provided that the 
corresponding tubes do not overlap in the WKB regions. MPEPs with small 
curvatures can also be treated. (4) 

Following the above qualitative arguments, we are led to define two types 
of regions in which 50(x, y) has a nonnegligible amplitude: 

(i) Quadratic regions, around the minima of ' r  where, for the low-lying 
states of interest to us, the WKB approximation is not valid ( I ~  - A ] ~ 0). 
In these regions, however, ~K" can be approximated by its quadratic develop- 
ments, so that Eq. (8) is exactly soluble. 

(ii) WKB tubes, where ]y I ~< 01/2, and where the usual one-dimensional 
WKB condition is satisfied in the x direction. Here, these tubes are located in 
classically forbidden regions (note that, of  course, for small 0, the quadratic 
regions and the WKB tubes overlap). 

In these tubes, we approximate ~ by 

where 

~.'(x, y) = V(x) + �89 (9) 

V(x) =- W(x, 0), W(z) -= a~W(x, y)/ey~l.:o (lO) 

The absence of a term linear in y in this small-y development of ~r is a 
consequence of the fact that the y = 0 line is the MPEP. Indeed, the condition 
of extremalization of the generalized classical action is the Euler-Lagrange 
equation, which simply reads in the present case 

~ f ' / ay  = 0 along the MPEP (1 1) 

Following Ref. 5, we set 

A = •o + ~1 (12) 
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where 

and 

where 

,~0 = O(0~ (13) 

/~ = O(0) (14) 

q~(x, y) = e•177 y) (15) 

f 
X 

So(x) = (1/0) dx' [V(x') - Ao] 1/2 (16) 

Gervais and Sakita (5) have shown that the functions x ~ [Eq. (15)] are 
completely determined if one knows two independent solutions ~+ and ~- of 
the equation governing the small, transverse classical fluctuations around any 
point of the MPEP: 

d2a*/dr 2 = W[x(r)]r a 0-) (17) 

where the relationship between the coordinate x along the MPEP and r is 
given by the solution of the instanton equation of motion: 

-�89 ~ + V(x) = A o (18) 

r can therefore be interpreted as an imaginary time associated with "classical" 
propagation along the MPEP in the classically forbidden region. 

Then/5) the solutions for the X's are given by 

where 

X,• y) = [A(~)*]"Xo• , y)  (19) 

~ d~ ~ ) 
.4 <~)t = e ~p' 0~H ~ ~ ;- ~ y (20) 

are effective creation operators for local transverse fluctuations. Xo + and X0-, 
defined by A < • ~ = 0, are given by 

X~176177 -T- 0@2]~1r'~ exp(  2 ~  y f ~ ( r )  2'] (21) 

1 da*  
~) ~ 0-) = T c--- ~ d--7- (22) 

where we have made the choice of sign :] dx/d~- = 0"~/2 (dSo/dx). 
The values of the parameter p (Eq. (21) are determined by the boundary 

conditions. At this stage, the question arises of defining, among the infinite 
number of solutions of Eq. (18), the proper c~ + and c~- functions. This choice is 
obviously determined by the condition that, for both Xo + and X0-, the corre- 
sponding f2's be positive. 
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The fact that one can find fVs that keep a definite sign along the MPEP is 
by no means obvious for a general ~ ( x ,  y). However, we must restrict ourselves 
to this case: a change of sign of t2 would imply the existence of regions where 
the radius of the propagation tube would become much larger than O(01J2), 
which would entail a breakdown of the whole approximation scheme. 

We will now show that the condition f~ ~ > 0 can be satisfied, provided 
that W(x)  is a slowly varying function. Indeed, in this limit, Eq. (18) for the 
~'s admits the two independent WKB-like solutions: 

( ;  } a• = [W(x(r))]-l/4 exp T dr'  {W[x(r')]} 1~2 (23) 

The condition of validity of Eq. (23) is that 

IdW/dr] << I W[ a/2 (24) 

which can be rewritten, with the help of Eq. (18), as 

Calling l~ the typical range of space variations of W(x)  (i.e., of the trans- 
verse curvature of Y" along the MPEP), and ly the typical transverse width of 
"~ (ly 2 = < - ~  ~2~/~y21~ = o), we have that condition (25) reduces to 

/ ,  >> Iy (26) 

The fVs corresponding to expression (23), which read 

1 1 d W  
~ ( r )  = [W(r)] ~/2 + 4 W(r) dr (27) 

are thus seen to be positive, as is needed. 
Finally, the solutions of Eq. (8) are 

cp,~(x, y) = [A(~*]"~oo(x, y) (28) 

with 

f Air(x) [2 ~ (r(x))y2) 
exp +so(x) 90 ~ = l dx l - ~ j (29) 

We shall now write expression (29) for ~oo ~ under another form, which is 
equivalent to (29) to the order where the WKB approximation is valid. This is 

1 V(x')  - + ( r ( x ) )  dx' (30) • exp +_ ~ o 

where h = Ao + ~ [eq. (12)] is the total "energy." 



A W K B  Treatment  of  Diffusion in a Mult idimensional Bistable Potential 521 

Indeed, in the WKB regions, V>> A - 0f2~/~/~, and the square root in 
the action integral in Eq. (30) can he developed to first order in (~i - 0f2 a/V~), 
which corresponds precisely, as will appear in the next section (see also I), to 
the highest significant order in powers of 0 in the calculation of the WKB 
action integrals. 

Using Eqs. (18) and (22), one then immediately checks that expressions 
(30) and (29) are equivalent, up to the multiplicative constant [a~(x0)]l I2. 
Note also that, once q~0 ~ is written in the form (30), one can move the lower 
limit xo of the action integral to any point of the x axis, which only multiplies 
q~0 ~ by a constant factor. As usual in the WKB method, it will be convenient 
to choose for'x0 the turning points that limit the various forbidden regions. 

The above expressions for q~0 a and the q~,~ have a simple physical inter- 
pretation: when the one-dimensional WKB condition is satisfied on the 
MPEP, and when the transverse curvature of ~/F is slowly varying along that 
path, the wavefunctions are "locally separable" in the WKB tubes: 

(a) The transverse motion in the plane &abscissa x is that of a harmonic 
oscillator at the local frequency f2 ~(x). 

(b) The longitudinal motion, along the MPEP, is the standard quasi- 
classical one, at the "longitudinal energy" [A - O~/2(n + 1/2)f/~J, where n 
[Eq. (28)] is the quantum number for the transverse motion. 

That is, when the transverse motion is fast with respect to the longitudinal 
one and to the variations of width of the allowed tube(s), the tranverse part of 
the wave functions exhibits an adiabatic adaptation to the x motion. This is 
reminiscent of the structure of waves in a waveguide with a slowly varying 
section. 

Finally, it is shown in Appendix A that this result can be generalized to a 
system with several transverse variables y~ under the following condition: the 
quadratic development (9) of ~ in the WKB tubes becomes 

1 ~ y~y;W~j(x) (31) V ( x ,  (y~}) = v(x) + ~ 
tJ 

For a given value of x, one can define the principal transverse axes of ~//', 
in which the (W~j} matrix becomes diagonal. For a general ~//', the orientation 
of these axes rotates when one moves along the MPEP. 

It is found that the wave functions remain "locally separable" provided 
that this orientation is a slowly varying function ofx .  

As can be shown from the work of Banks and Bender, (4~ the separability 
result also holds for a curved MPEP, provided that its radius of curvature 
remains large compared with the transverse width of ~/', l~. 

Finally, one can say that the above extended WKB approximation is valid 
only if the valley of ~" along the MPEP is reasonably smooth, i.e., if all its 
geometrical characteristics vary slowly along that path. 
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3. VVKB S O L U T I O N  OF THE F O K K E R - P L A N C K  E Q U A T I O N  

In order to apply the above method to the study of the solution of the 
Fokker-Planck equation, let us first consider in more detail the shape of the 
potential Y/"(x, y) associated with a two-dimensional bistable physical potential 
U(x, y )  (Figs. 1 and 2). 

We assume that the two minima and the saddle point of U all lie on the 
x axis, at x = b, a, and 0, respectively. For small 0 [0 << 2xU = rain{U(0) - 
U(a), U(O) - U(b)}], yr  has three minima located at the same points as the 
extrema of U, separated by saddle points at heights of order (AU/a)L 

With the help Of Eq. (7), one obtains for the quantities V(x)  and W(x)  
which describe the potential 4/" in the vicinity of the MPEP [Eq. (9)] 

V(x) = � 8 8  ~ - �89 + w ( x ) ]  

rV(x) = �89 + w ~ ( x ) ]  - �89 

where 

(32) 

(33) u(x) = u (x ,  o), w(x) = a~u(x,  y)/ay~ly~o 

describe the physical potential U along the MPEP: 

U(x, y )  ~ u(x) + �89 (34) 

In the harmonic regions around the minima of ~/r (x ~_ x~ = b, 0, a), ~f" 
can be approximated by its quadratic developments: 

~//'(x, y) ~ ~f'(~)(x, y) 1,,r ,, l ,  ,-2- = -~tllu~ + wi] + ~kui) tx  - x~) 2 + �88 2 
(35) 

where u'~' = u"(xO, wi = w(xO. 
To get an estimate of the orders of magnitude of the first of the A~ [Eq. 

(5)] which govern the long-time behavior of P, let us calculate the "energy"  
levels of the three harmonic (i) wells [Eq. (35)]: 

;~) =_ ;v ~) = -lO(u~' + w~) + Olug'l(p + �89 + Ow,(n + �89 n,p  = O, 1, 2 .... 
(36) 

The lowest of these levels are given by i = a or b, and n = p = 0, with 
3. (a'b) = 0. There always is, even for an asymmetric U, a double degeneracy of 0,0 

the lowest harmonic (a) and (b) levels, which is lifted by the tunneling coupling, 
thus giving rise to two levels. The lowest of these must correspond to the equi- 
librium distribution Pea oc exp[ -  U(x, y)/O] [Ao,o = 0, rPo,o = C0,o exp(U/20)]. 
The other one corresponds to an exponentially small eigenvalue to,~ -= IK, of 
order e xp ( -  2xU/O). 

The next excited levels, which derive from the harmonic levels (36) with 
(n + p) >/ 1, have A values of order 0. 

The corresponding states can therefore be determined with the help of 
the WKB method developed in Section 2. 
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As in the one-dimensional case, (1) one may then distinguish among three 
time regimes : 

(i) The Kramers-Eyring (long-time) regime t ~> ~'K = 0/AK, controlled by 
the two lowest eigenstates. 

(ii) The intermediate-time regime: max[(u~') -~, (w0 -1] ~< t << rz, con- 
trolled by the eigenstates with A values of order 0. 

(iii) The short-time regime, t <~ max[(u;')- z, (w~)- ~], where a large number 
of states--including those with A > (zX U/a)2--contribute, and which we do 
not consider here. 

3.1.  The  K r a m e r s - E y r i n g  R e g i m e  

The eigenstates of interest here, which correspond to the lowest (n = 0) 
level of the local transverse harmonic oscillator, are described in the WKB 
tubes by linear combinations of the wave functions % ~ (x, y) of Eq. (30). 

Since, for x -+ x~, f ~ ( x )  -+ ~ / ~  = w~/~/~2, it is seen in Eq. (30) that the 
y part of the wave functions matches automatically with that of the n = 0 
solutions in the harmonic wells. 

To calculate the eigenvalues and eigenfunctions, one is thus simply left 
with a one-dimensional matching problem in the x direction. This leads to a 
calculation formally identical to the one performed in I for the one-dimensional 
FP equation. Namely, the wave function is built up by the same technique as 
that developed in Appendix A of I, except for the following modification : in the 
one-dimensional case, we were led to define the two generalized classical 
actions Sa(A) and Sb(A), connecting wells (b) and (0), and (0) and (a), respec- 
tively, 

so(h) = s ax' _ A]1,2, f ;  --0- [V(x') Sb(A) = dx' [V(x') - A] 1/2 (37) -0- 

where fl and a are the classical turning points at energy A, respectively, close to 
b and a. 

These should now be replaced in the matching calculation for the ~o's by, 
respectively, S(+) (i = a, b) for the %+ components of the WKB solutions, and 
S~ -) for the % -  ones, where, for example, 

(o --o-dX' { ~0 ) 1/2 
s ' ~ ( a )  = JB V(x ' )  - ~ + ~(~(x'))) (3s) 

where fi is now the turning point of the longitudinal motion. (Note that, since 
f)+ and f ) -  have the same limits in the quadratic regions, the matching pro- 
cedure in the overlap regions is not modified.) Defining 

u = A/Oug, I~ = A/Olu'd I - 1, ~ = A/Ou~ (39) 
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we obtain for the eigenvalue equat ion [see Eq. (14) of  I] 

r ( -  

(2rr) 1/2 [ e '~'+1/2 e-Zb (a, 
- e-=~ (a' cos ~r~: cos ~r/, P---(-~-" u) \ v - ~ } ]  - cos ~r~ cos W~ 

x ~ \~-7-7  ] - e-%(a)+~b (a)' cos rr~: cos try sin s rr/, 

x ~ = 0 (401 

where 

Z~(A) = S}+)(A) + S}-)(A), i =  a, b (41) 

' and P is the Euler g a m m a  function, 
One immediately checks that,  as in the one-dimensional  problem,  

,~ = 0 (v = ~: = 0 , / ,  = - 1) is an exact solution of Eq. (40), as is needed to 
describe the relaxation of  P toward its equil ibrium value. The corresponding 
wave function ~Oo.o is the local approximat ion ,  in the W K B  tubes and a round  

r l /2  e x p [ -  U(x, y)/20]. the extrema of U, of  the exact %,o = ,~0.0 
Following I, we find for the eigenvalue of  the first (Kramers -Eyr ing)  

eigenstate 

2~ = (O/2rr)[u~e-=~(~ + u~e -~r176 (42) 

The quantities Z~,b(0) are calculated in Appendix  B. We find that  

Z,(0) = (1/0)AU~ + �89 Loglu;'/ugt + �89 Log[w(O)/w(i)] (43) 

where A U~ = u0 - u~ is the difference of  altitude between the saddle point  and 
min imum (i), i.e., the activation energy. So, finally, 

rK O- - 2--~ (u~tug[)l'2 e-~~176  + ,-bl~o , \~(0)] e-~V~l~ 

(44) 

which can be rewritten, in terms of the part i t ion functions Z~ and Zo for trans- 
verse vibrat ions at the min ima and at the saddle point  [Z~,o oc (w~.o)- a/2] as 

rK 2rr (U;IU;I)I/2 e-~V~/~ + (u;[u;l)112 e -~b /~  (45) 

I t  is shown in Appendix  A that  fo rmula  (45) also holds for  an N-dimensional  
system with a smooth  valley. 

This is precisely Eyring 's  <~) generalization to a mult idimensional  system 
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of the Kramers reaction rate formula (e) for the high friction limit. Thus, our 
calculation shows that this expression is valid only under the same restrictions 
as the extended WKB method: (a) the wells of Umust  be deep (AU >> 0); (b) 
the wells must be connected by a well-defined, i.e., steep, valley, which should 
also be smooth, i.e., its width should be small with respect to its radius of 
curvature and to the characteristic distances on which its cross section and the 
orientation of its principal axes vary. 

These condition ensure that, as is physically reasonable, the part of the 
distribution associated with the transverse vibrations may adapt adiabatically 
to the longitudinal motion. 

3.2.  I n t e r m e d i a t e  T i m e  R e g i m e  

This regime corresponds to times (max(lull -1, wi-1)} <~ t << rz, and 
is controlled by the eigenstates of ~ deriving from harmonic states with 
n + p /> 1. For a general asymmetric U, these states are not systematically 
degenerate, and one can, as in the one-dimensional case, distinguish among 
states q~) with i = 0, b, or a, which are essentially localized in the correspond- 
ing harmonic wells. Their energies differ from the harmonic values ~<2~p 
[Eq. (36)] by exponentially small terms (which are negligible since the 
corresponding ~,,~'<~ :~ 0). 

(0 (X, Let us call q),,~, y) the corresponding wave functions. The distribution 
function can be written [see Eqs. (23)-(24) of I] in this regime 

P(rt ]ro) = P~(rt fro) 

+ q~o,o(Xo, Yo) E -(~) cx ''~ ") rx w~,pv , e/P~,v~ o, Yo) e x p -  
np~ 

n+p>~l 

(46) 

where the sum runs on states with a~*}~ << (kU/a) 2, and for t << ~:, 

%,0(r) 
P~(rt l ro)  = Peq(r) + ~ q%,l(r)~o,l(ro)e -~n~ 

-~ P~n(r, t = 0[ro) (47) 

Note that expression (46) for P holds only for r and r0 in the WKB tubes or 
the harmonic regions. 

The functions ~") ~,,v can be calculated explicitly with the help of the results 
of Section 2, and are given in Appendix C, together with the explicit ex- 
pressions of P. In view of the heaviness of the corresponding algebraic expres- 
sions, we will only give here a qualitative analysis of these results: 

(i) If  [Y0] ~< (O/wo) z/2 and IXot <~ (O/tu~l) 1/2, P factorizes into the local 
transverse equilibrium distribution (which is reached for t > w -1) and a 
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longitudinal part, describing its flow along the MPEP, which is exactly the 
distribution Q(xtlxo ) for the one-dimensional problem with potential u(x) (see 
I): 

[ w ( x ) ~ , 2  i y~w(x)] 
P ( r t l r ~  = I, Tg-~] exp t 20 ] Q(xtlx~ (48) 

In the intermediate-time regime, as discussed in I, P thus evolves along the 
MPEP with two different behaviors: on a time of order 

1 luglb 2 (49) to = ~ Log 0 

it spreads out of the (0) diffusive region, then flows on a short time through 
the WKB region and grows two peaks close to the minima of U, which 
move toward these minima while their amplitudes increase. It exhibits 
Suzuki's (a~ scaling property as long as most of the weight of P remains in the 
WKB tubes, and can be cast into the universal form 

PwxB(rtlro ) dx dy = (lfir) exp[- (u  2 + v2)] du dv (50) 

with 

1 

1 [ tw(x )~ l~q~  v 2=- ~ [y[---~-] .[ (52) 

~'(x) is a geometrical factor, characteristic of the anharmonicity of U, inde- 
pendent of O, defined in Appendix C [Eq. (C5)], and r is Suzuki's variable 

.~ -- (O/lu';I b=) exp(2t [u~[) (53) 

Then, when an important part of the weight of P enters the (b) diffusive 
region Ix - b ~ (O/u'~) 112] Suzuki's scaling statement is no longer valid. In 
this region P is given in Appendix C. It takes a time 

1 u'~b 2 
tb = ~ L o g  0 (54) 

for the distribution to build the local equilibrium shape (of width ~ 0 lt2) 
around the minima of U. The Kramers-Eyring regime is reached for t >> 
to + t0. Note that to and to have comparable orders of magnitude. 

(ii) If ]xol is in the WKB region (Ixo] ,-~ 0 ~ and lYo <~ (O/wo) l/z, the only 
difference with case (i) is that the delay time to disappears: P has a drift- 
controlled x motion in the WKB tubes on a time of order (u") -1, of the same 
order as the transverse equilibration time, after which its peak comes close 
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to b, it then takes a time of order 6 for it to take the shape corresponding to 
local equilibrium in the wells of U. 

(iii) If lYol is finite (,,~ 0 ~ but in the harmonic vicinity of the MPEP, the 
evolution is more complex: indeed, it takes a time tt~ ~ (2w)-1 Log(lv%v/O) 
(where ly is the transverse width of the valley of U) for P to come back to 
transverse equilibrium. However, in the WKB region, P still factorizes into 
a local transverse term and a longitudinal one, which is again Q(xtlxo ). So, 
there still is a Suzuki phenomenon in the longitudinal direction, now super- 
imposed on a transverse relaxation which takes place on a time tc~ comparable 
to the time to of peak growth. Again P is given by Eq. (50), where now 

1 1/2 1/2 w(x) e x p [ -  tWo - 3"(x) (55) v 2 = ~ Y - Yo Wo 

The 0-independent geometrical factor 3"(x) is defined in Appendix C [Eq. 
(C6)]. In general, since tt~ ~ to, P enters the (x _ b) diffusive region before 
complete transverse relaxation, so that it no longer factorizes, in that region, 
in toa  longitudinal and a transverse term [see Eqs. (C19)-C20)]. The Kramers- 
Eyring regime is reached for t >> max {to + tb, &r}. 

Thus, it can be concluded that Suzuki's description (~ of the evolution of 
P from a region of instability can be extended to an N-dimensional system 
under the following conditions: 

(a) There exists in the potential U a well-defined most probable path 
connecting the saddle point and the minima of U. The valley along that path 
must be smooth (slowly varying width, weak curvature and twisting). 

(b) If  the above conditions are satisfied, P has the scaling form given by 
Eqs. (50) and (51)-(55) for times ~< to, i.e., as long as its lateral peaks have not 
entered the diffusive regions around the minima of U. 

The growth time of the lateral peaks therefore remains, as in the one- 
dimensional case, of order to, (3~ but it takes a time of order max{try, to + 6} 
for the distribution to reach the final Kramers-Eyring regime. 

A P P E N D I X A .  G E N E R A L I Z A T I O N  OF THE E X T E N D E D W K B  
T R E A T M E N T  TO N D I M E N S I O N S  ( N  > 2) 

The N-dimensional treatment, which has been set up by Gervais and 
Sakita, (5~ follows closely the two-dimensional one. So we give here only its 
main lines. 

Let us call x the coordinate along the MPEP (which we still assume to 
be a straight line; the extension to a curved MPEP can be inferred from 
Ref. 4) and y = (Yl ..... YN-1) the N - 1 transverse orthonormal coordinates. 

Equation (8) generalizes obviously into 
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In the vicinity of the MPEP, ~ ( x ,  y) is approximated by 

~/'(x, y) = V(x) + �89 (A2) 

where 

V(x) -= $/'(x, o) (A3) 

and the (N - 1) x (N - 1) matrix W is defined by 

W~j(x)- 02r (a4) 

The equation governing the small transverse fluctuations around any 
point x(r) of the MPEP [where r is the "instanton time," Eq. (17)] is now 

d2ee/dr 2= W[x(r)]~(~ -) (A5) 

But, now, W[x(r)] is, in general, nondiagonal in the fixed {x, y,} frame. Let 
{az[x(r)]} be the unit vectors defining a local set of orthonormal transverse 
coordinates attached to point x(r) of the MPEP (l = 1 .... , N - 1), which will 
be defined more precisely below. In this new frame, Eq. (A5) can be rewritten 

Dzm(r)am �9 (r) = ~ Wlm(r)am �9 (~.) (A6) 
trl m 

where 

d2amX"" ~ I damx'~d d 2 
Dzm(r) = az --~7-r2 / + 2 az d r / ~ r  + 3tin ~ (A7) 

We now choose the local coordinates Yz defined by the unit vectors {az[x(r)]} 
so that they diagonalize the matrix W' such that 

/ d2am~ = W m- \ a  / (AS) 

Equation (A6) then gives 

d2a*edr----- 5- + 2 ~m (atl damx'~dr / dame W((")a' a (r) (A9) 

Note that (az[da/d~) is zero (az 2 = 1), while the (atlda~/dr) for l r m 
characterize the rate of rotation of the local frame along the MPEP, i.e., the 
rate of twist of the valley of U. 

There is, to our knowledge, no general solution of the system of coupled 
equations (A9). However, if 
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the second term on the 1.h.s. can be neglected, and Eqs. (A9) decouple. 
Moreover, if condition (A10) is satisfied, {a~Id2a~/dr 2) can also be neglected 

in (AS), ~ "  reduces to ~', and (x, {Yz}) is simply the set of local normal co- 
ordinates associated to the potential ~,~ along the MPEP: Thus, assuming that 
condition (A10) is satisfied, we define the creation operator for the local 
transverse fluctuations along az as 

0 

Then, 

:~ X ,;~, . . . . . . .  ( , y)  = (A~ ~ ' y , ( & ~ ' ) ~ . . .  ~o ~ (x,  y)  

and 

~~176 Y) = \--dx-x] 

d~t �9 '~ 
~ y~] (A11) 

(A12) 

+So(x) ~- hat(x) Y " " Y /  
- O~v/2 2 0 ~ / 5 ]  

(A13) 

where the (N - 1) x (N - 1) matrix ~ is defined by 

1 d~l ~09 8~m 
~ [ , ( X ) ]  - ~ ( , )  d ~  (A14) 

A P P E N D I X  B 

We want to calculate here the quantity 

Z~(0) = S~+~(0) + S'~-~(0) 
where 

(B1) 

f o dx' 0 S~'(O) = o --g- V(x')  + - ~  f~(~(x ' )) j  lt2 (B2) l 

/30 is the turning point of the longitudinal motion, defined by 

/30 - b = (20/u'~) lj2 

The calculation of S(b~(0) follows the same lines as that of SJ0) for the one- 
dimensional case (Appendix B of I): we define two cutoffs ~ and ~ located in 
the overlap domains between the WKB tube and the (b) and (0) quadratic 
regions, i.e.,/30 < ~: < "q < 0, and: 

0 a~(~(x) )~  0 ,, " ~  (i) V(x) + - ~  = -~2 "~ + ~ (x - b) 2 

for/30 ~<x ~< ~: (B3a) 
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,- t l~  2 

0 ~ )  x2 0 f~(r(x))g  ]uol + - -  for~) ~<x~<0 (B3b) (ii) V(x) + --~ -~ 

(iii) Since �88 2 >> �89 + w - D~ ~: v~) for ~ ~< x ~< 7, in that region 

[ V(x) + --~2 F2~:(,(x))] ~/2 

'u'(x)l {1 O [ u " ( x ) + w ( x ) - f ~ % 4 x ) ) ] }  (B3c) 
2 [u'(x)] 2 

Splitting the interval (/3o, 0) in Eq. (B2) into the three intervals (/30, ~:), (E, rj), 
and (7, 0), we get 

S~:~(O) = I~ :L + /2* + /3 • (B4) 

where 

12(~ - b) t 1 [ e  - b ' ~  1 1 Log (B5) 
I~ e= ~= -2 \~o - b] 4 2 flo b 

�9 /~lu~l + 1 1Log  1 [20 '~ 1'2 
I2~ g 40 -~ - ~ ~ \ luo l ]  (B6) 

ia ~ u(~) 20- u(~:) ~ Log u-~U;(~) _ 21 f ]  dx' w(x') -u,(x,)~/2f2:~(x') (B7) 

Using Eqs. (27) and (18), we get 

~q~ = ~ / ~  + (2V) 1/= aW (B8) 
- 4W dx 

Moreover, with the help of Eq. (32), condition (25) can be rewritten as 
u'w' << w 2, so that, developing W 1/2 to first order, we obtain 

( u'w'~ u'w' 
f ~ / 2 ~  w + - ~ - w ]  + 2w (B9) 

from which 

, + = 2o- Log (BlO) 

/3- u(~)) -- u(~:) �89 T [ u'('q) (B11) = 20 Logl U--~ I 

and, finally, using quadratic developments for u(~) and u(~), we get 
It 

Z~(0) = Uo - ub ~ _ _  (B12) ----g---- + �89 Log + �89 Log w(O) 
w(b) 
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APPENDIX  C 

The general form of the wave functions ~(~) for the eigenstates deriving "F72,p 

from the (rip, i) harmonic states is given by Eqs. (19), (21), (30). Their y part 
is simply the wave function of the nth excited state of the local harmonic 
oscillator. Their x part is calculated with the help of a WKB matching pro- 
cedure which follows completely the lines depicted in Appendices A and C 
of I. Choosing ro in the quadratic vicinity of the saddle point of U, we obtain 
the following results. 

C.1. r in the (o) Harmonic Region 

In this region, the contribution p(o) of the (0) sum in Eq. (46) gives the 
only important contribution to P (P(~) and p(b) are exponentially small com- 
pared with it), and 

_(o)/r~ = 1/4.pV nt) 1/2D~ y 

(c1) 
with ..~,pa(~ = alu'dl(p + 1) + Owon. The D~ are the Weber parabolic cylinder 
functions. 

The sum on p and n can be, in the time domain considered here, extended 
to infinity with only exponentially small errors. Using the well-known 
formula (7) 

we find 

1 z,~D~(x)D,~(y ) 

1 xyz  - �88 2 + y2)(1 + z 2) 
(1 - z2) 1/2 exp 1 - z 2 (C2) 

W o ~ 1/2 
P(rtlr~ = \27r0] [1 - exp(-2Wot)] -1/2 

• exp[ wo[y --_.Y_o exp(-tWo)]21 
L 2011 - exp(-2tWo)] ] 

tru J l,2 • \ ~ 0 ]  [1 - exp(-2t[ugl)] -I/z exp(-t /ugl)  

x exp( [x(lugl/O)'~exp(-tlu;D2[1 - exp(-2tZtUoJ)]x~176 

(c3) 
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C.2. r in the W K B  Tube 

Here again, P _~ p(o~. In this region, one finds 

,~,.t, (-)P(P[ n:)-"~ ) ~ " 

x e xp [ - ( p  + 1)[u;t 3'(x)] 

x _w(x)_ "+l/z e x p [ - n  8"(x)]D. y exp 
\ W o !  

u ( x )  - u(o) 
2O 

(C4) 

and 

w ( x )  
= �9 exp[ -  tWo - 3"(x)l (C8) 

Wo 

e x p [ - l u o l  ~'(x)] lugxl 
QwxB(xt [xo) --- (2~r~_)1/2 bu'(x) 

x exp - ~  f f - -~exp[-]u; l  3 ' ( x ) ] -  x o [ - ~ )  ] 

(C9) 

is precisely the one-dimensional distribution in the WKB region [see Eq. (44) 
of I], which depends on time only via Suzuki's variable: 

.~ = ( O / l u ; l b  2) exp(2t lugl) (CIO) 

where 

where the O-independent geometrical parameters ;o( 
a'(x) = 1 1 d~ ( c5 )  

x u ~  u'(~) 

3"(x) = f ]  w(s~)u,(~)- wo ds ~ (C6) 

characterize the integrated anharmonicity of U along the MPEP, measured 
on (u')-1 and (w/u'). Again, for the times of interest, the n and p sums in 
p(0~ can be extended to infinity, and we find 

~w(x)~ 1/2(1 __ ~r2)_ 1/2 
PwxB(rtlro) = \T~-ff~0! 

{Y [w(x)]l/~ -2 cryo(Wo)l/~}~\ 
x exp 20(1 - ~2) j Qw~B(xtlxo) (C7) 
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C.3.  r in t h e  (b )  H a r m o n i c  Well 

In this region, P~n and P(b) are no longer negligible with respect to p(o). 
In order to get the full expression of P, we need to know the values of ~(o) (r~ Y n , p \  1~ 

~, ; ( r )  (~) for r in the close vicinity of the b minimum, and of ~%(ro). These are 
found to be 

U" 1/4 (27r) 1/2F(-v) __-'~l/2(Wb]n+z/2\Wol (o, [wol o1~ , , p , ) _ . 2 .  uo _ 
~. . . ( r )  = ( - Y [ 4 - V - ~ )  t "  " 

(% 

x D , ~ t y t T  ] ] 

where 

and 

~ -  !.il w 0 -  w~ u--T (p + 1) + ~ u b  

A(o) = olugl(p + 1) + Owon /t,p 
(C12) 

s  . ,] s {, 1] 
8o = dx (x --b)ub u'-(x) + dx , u-(x) (C13) 

m Xlgo  

8~ = dx ( x - 7 9 . ;  ~---~SJ + dx ~ ~,(x)j 

The intermediate point x m can be chosen anywhere between x = 0 and x = b. 
We can take, for simplicity, Xm to correspond to the local maximum of V(x), 
i.e., to the inflection point of u(x): 

(()  [ WbUb ~ ' /  . . n ' ) - ' 1 2  wb 1/2', / . 2  
~(~%(r) = t 4 ~ )  tP' �9 D,, y T ) D ~ , t ( x - b )  (C15) 

9r = [4__g5~ ) (p! n!)_,/2 (2~r) *'ar(-ff) (.+.,,2/(ubtx~s 

x exp(U(b) -20 U(O) 1(~)~0 80 + n 8,) 
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n 
U b  W b - -  W O 

t z + 1 = lu~---~ p + lU,~ [ n (C17) 

and 
A(o) = Ou~p + Ow~n 

From which we obtain, for r in the (b) quadratic region, 

P(rtlro) = P~Ar, t = 0]ro) + P(~ ) + UO)(ro) (C18) 

( - ) "  F ( -v )  D [ [Wo \1/2\  ~ i [w~]1/2'~ 
X 

(C19) 

( U(x, y ) -  V(b, 0))(w~u~) 1,2 
Ub)(rt lro) = exp - ~-~ 2rr0 

x (T~) -"/2 ,rqtP~';/21~'ol (C20) 

with 

0 ( , ,  0 ),~o,,~; 
%ll = xm2lUo-'-~l \Uo(Xm -- b) ~ e2(t+~~ (C21) 

~(o) w u" - e2~dt + ~176 + 2~ (C22) 
" ~ "  = \ d ~ o(x~,- b)~! 

T(b)= /___.0___0 ] 'wb-~~ e2~b(,+Oo)+~o, (C23) 
bi t XmZlUgl] 

In order to estimate the characteristic time for the evolution of P, it is 
important to know explicitly what powers of 0 appear in the sums (C19) and 
(C20). If one of the quantities (Xo, (x  - b), Yo, Y)  is of order 0 ~ one can 
replace the corresponding D function by its asymptotic development. If, for 
example, (x - b) ,-~ 0 ~ this gives exactly the WKB result of Eq. (C7). 
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We will only treat here the case where these four quantities are of order 
0112, so that the true 0 factors in sums (C19)-(C20) only come from the r 
factors. For  example, in Eq. (C19), these can be rewritten as 

(.<o)~-~m_ ~-(~+1)/2 _ K~p e x p [ - u u ~ ( t  - to - t~)] "bJ.) \ ~ b l l )  

• e x p { - n [ w b t  + (Wo - w~)to]} (C24) 

where the constant 

\Wo/  ) exp 0 n 51 (C25) 

is 0 independent; 

1 lu; (b 2 
to = 2 - ~  Log 0 

is the characteristic time necessary for a significant part of P to leave the 
central diffusive region; and 

1 ubb 2 
tb = x--7 Log 

2ub 0 

is, analogously, the time for a distribution starting from a finite distance [of 
order (O/u~') ~ from the b minimum to build the equilibrium shape in the 
vicinity [of order (O/u'~) ~/2] of that minimum. 

As discussed in Section 3.2, the distribution reaches the (b) vicinity 
considered here only for times t > to. If  t >> to + tb, it is clear that p(0) + p<0) 
becomes negligible, and P _~ P~.  So, to + t0 is the characteristic time for 
getting into the Kramers-Eyring regime. Let us therefore consider the 
domain to << t ~< to + t0 where P is essentially concentrated in the (b) region 
and given by Eqs. (C19)-(C20). In order of magnitude, [Wo - w0j "" wb, and 
using Eq. (C24), it is seen that the n # 0 contributions to p(0) are negligible. 
One easily shows that the same result holds for p(b). This means that the 
distribution remains locally equilibrated in the transverse direction, and 

P(r t  [0) --- (wo/2zrO)l l2[exp(-y2wb/40)]Q(xt  I0) (C26) 

where Q(x t lO  ) is the distribution in the considered space (x _~ b) and time 
domain for the one-dimensional problem with potential u(x)  [Eq. (34) of IJ. 
For  Ix - bl <~ (O/u'~) ~/2, Q evolves with the characteristic time to + to, which 
corresponds to ral I = i. 
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